Fragile X Mental Retardation 1 and Filamin A Interact Genetically in Drosophila Long-Term Memory

نویسندگان

  • François V. Bolduc
  • Kimberly Bell
  • Cory Rosenfelt
  • Hilary Cox
  • Tim Tully
چکیده

The last decade has witnessed the identification of single-gene defects associated with an impressive number of mental retardation syndromes. Fragile X syndrome, the most common cause of mental retardation for instance, results from disruption of the FMR1 gene. Similarly, Periventricular Nodular Heterotopia, which includes cerebral malformation, epilepsy and cognitive disabilities, derives from disruption of the Filamin A gene. While it remains unclear whether defects in common molecular pathways may underlie the cognitive dysfunction of these various syndromes, defects in cytoskeletal structure nonetheless appear to be common to several mental retardation syndromes. FMR1 is known to interact with Rac, profilin, PAK and Ras, which are associated with dendritic spine defects. In Drosophila, disruptions of the dFmr1 gene impair long-term memory (LTM), and the Filamin A homolog (cheerio) was identified in a behavioral screen for LTM mutants. Thus, we investigated the possible interaction between cheerio and dFmr1 during LTM formation in Drosophila. We show that LTM specifically is defective in dFmr1/cheerio double heterozygotes, while it is normal in single heterozygotes for either dFmr1 or cheerio. In dFmr1 mutants, Filamin (Cheerio) levels are lower than normal after spaced training. These observations support the notion that decreased actin cross-linking may underlie the persistence of long and thin dendritic spines in Fragile X patients and animal models. More generally, our results represent the first demonstration of a genetic interaction between mental retardation genes in an in vivo model system of memory formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

گزارش یک مورد سندرم ایکس شکننده همراه با ناهنجاری انگشتان

  Fragile X Syndrome, the most common cause of inherited mental retardation, results from mutation in fragile X mental retardation gene (FMR1) on long arm of X chromosome, Xq27.3. Clinical features include moderate to severe mental retardation without neurologic deficit, long face, large ears, prominent jaw, macro-orchidism, attention deficit, behavior di...

متن کامل

The Bantam microRNA Is Associated with Drosophila Fragile X Mental Retardation Protein and Regulates the Fate of Germline Stem Cells

Fragile X syndrome, a common form of inherited mental retardation, is caused by the loss of fragile X mental retardation protein (FMRP). We have previously demonstrated that dFmr1, the Drosophila ortholog of the fragile X mental retardation 1 gene, plays a role in the proper maintenance of germline stem cells in Drosophila ovary; however, the molecular mechanism behind this remains elusive. In ...

متن کامل

Neurobiology of Disease Deficits in Trace Fear Memory and Long-Term Potentiation in a Mouse Model for Fragile X Syndrome

Trace fear memory requires the activity of the anterior cingulate cortex (ACC) and is sensitive to attention-distracting stimuli. Fragile X syndrome is the most common form of mental retardation with many patients exhibiting attention deficits. Previous studies in fragile X mental retardation 1 (FMR1) knock-out (KO) mice, a mouse model for fragile X, focused mainly on hippocampal-dependent plas...

متن کامل

Deficits in trace fear memory and long-term potentiation in a mouse model for fragile X syndrome.

Trace fear memory requires the activity of the anterior cingulate cortex (ACC) and is sensitive to attention-distracting stimuli. Fragile X syndrome is the most common form of mental retardation with many patients exhibiting attention deficits. Previous studies in fragile X mental retardation 1 (FMR1) knock-out (KO) mice, a mouse model for fragile X, focused mainly on hippocampal-dependent plas...

متن کامل

Courting a Cure for Fragile X

Fragile X syndrome is the most common heritable cause of mental retardation. Previous work has suggested that overactive signaling by group I metabotropic glutamate receptors (mGluRs) may be a mechanism underlying many of the disease symptoms. As a test of this theory, McBride et al. show that in a Drosophila model for Fragile X syndrome, treatment with mGluR antagonists can rescue short-term m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2009